Double ergodicity of nonsingular transformations and infinite measure-preserving staircase transformations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Ergodicity of Nonsingular Transformations and In nite measure-preserving Staircase Transformations

A nonsingular transformation is said to be doubly ergodic if for all sets A and B of positive measure there exists an integer n > 0 such that (T n(A) \ A) > 0 and (T n(A) \ B) > 0. While double ergodicity is equivalent to weak mixing for nite measure-preserving transformations, we show that this is not the case for in nite measure preserving transformations. We show that all measure-preserving ...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

Quasi-factors for Infinite-measure Preserving Transformations

This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...

متن کامل

Ergodic and Spectral Analysis of Certain Infinite Measure Preserving Transformations

0. Introduction. Throughout this paper T will denote a measure preserving transformation on a cr-finite infinite measure space (X, (B, m) which is point isomorphic with the Lebesgue measure space of the real line. Unless otherwise stated, T will be one-one. Equations involving functions or sets will always be interpreted modulo sets of measure zero. T is said to be ergodic if T~1E = E, ££(B, im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2001

ISSN: 0019-2082

DOI: 10.1215/ijm/1258138165